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PART 1 - Preliminaries

@ Examples of DDEs
@ Delayed Negative Feedback
@ Solving DDEs using a Computer

J.A. Collera (UP BAGUIO) Introduction to DDEs with Applications



Textbooks in DDEs

Texts in Applied Mathematics

Hal Smith

An Introduction
to Delay Differential

Equations with
Applications
to the Life Sciences

{;_'.j Springer

Introduction to DDEs with Applications 3/69

J.A. Collera (UP BAGUIO)



Textbooks in DDEs (Graduate Level)

Jack K. Hale
Sjoerd M. Merduyn Lunel
uatnonieal | INtroduction
Sciences |t Functional
Differential
Equations

r‘éf':mmmmmu.u.:

0. Diekmann
5.A. van Gils
SM. Verduyn Lunel
H.-0.Walther

w2 Delay
Sciences | Equations

Functional-, Complax-,
and Monlinear Analysis

J.A. Collera (UP BAGUIO) Introduction to DDEs with Applications



Examples of Delay
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Examples of Delay

"How do you send text messages?”
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Delays in Biological Systems

@ SIR Epidemic Model with Fixed Period of Temporary Immunity?:

S(t) = —al(t)S(t)+ bl(t —7)
i(t) = al(t)S(t) — bl(t)
R(t) =  bl(t)— bl(t —7)

where S, I, and R denote susceptibles, infectives, and recovereds.

@ Individuals remain in R class precisely 7 units of time.

LF. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and
Epidemiology, Springer, New York, 2001.
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Delays in Biological Systems

@ The Mackey-Glass Equation for the density of certain blood cells?

bx(t — )

X(l’) = —ax(t) + m

where a, b, A, 7 > 0.

@ The delay 7 is the time between initiation of cellular production in the bone
marrow and release of mature cells into the blood.

2] . Glass and M.C. Mackey, From Clocks to Chaos, Princeton University Press, Princeton NJ,
1988.
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Semiconductor Laser

Lang and Kobayashi (1980), Alsing et al (1996)

E(t) = (1+ ia)N(£)E(t) + ne /% E(t - 7)
//// TR(t) = P — N(t) — (1 + 2N())|E(t)?

Laser Filtar Mirror
: we S Elr—7)
Erzgraber, Krauskopf —— > |aser
and Lenstra (2006) 1 Po— 2
e = ]
Ei(t) = (1 + i) Ny(t)Ex(t) + ne Byt — 7) — IAEy (1)
{‘_:2{1‘) = (1 +ia)No(t)Ea(t) + e "B (t —7) + IAE(TL)
TNy(t) =P — Ny(t) —(1+ 2Ny (t))|Ex(2)[?
TNo(t) = P — No(t) — (1 +2Na(t))| Eo(t)?
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Warm-Up Example: Delayed Negative Feedback

Consider the following IVP Consider the following DDE
%(t) = —x(t). (ODE) |
{ x(t) = 1 for t=0. x(t) = —x(t-1), (DDE).
Using the ansatz x(t) = e, we get

A+1 = 0

and the solution x(t) = e™".

\ Using the ansatz x(t) = e, we get

p Ate? = o0 )

Since the root of (1) has neg. real 1. Do all roots of equation (2)
part, the zero solution of the linear have negative real parts?
ODE is asymptotically stable. 2. Find the solution to the IVP.
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Prove: All roots of A + e~ = 0 have negative real parts.

Proof.
o First note that A + e~* = 0 doesn't have any real roots.
@ Suppose A = u + iv is a root of A+ e~ * = 0 where u,v € R.
o NTS: u<0

@ The root A = u + iv satisfies the transcendental equation, that is,

(u+iv)+e ) = ¢
(u4iv)+ee™ = 0

(u+iv)+ e “[cos(—v) +isin(—v)] = 0
(u+iv)+ e “[cos(v) —isin(v)] = 0

0

(e7“cosv+u)+i(v—e "sinv) + /0.
@ Thus,
e Ycosv = —u,
e Ysinv = V.
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Prove: All roots of A+ e =0 have negative real parts.

@ Recall that a root A = u + iv of A + e~ = 0 satisfies

—u = e “Ycosv and v = e “sinv.
o WLOG, suppose v > 0, since complex roots come in conjugate pair.
@ Going for a contradiction, suppose further that v > 0.
@ Since u > 0, the first equation tells us that cosv < 0. Thus,
v > w/2. 3)
@ Meanwhile, the second equation gives |[v| = e~ Y|sinv|.
@ Note that |sinv| < 1. Also, since u > 0, then e™" < 1. This implies that

v < 1. (4)

We arrived at a contradiction, since v cannot satisfy both (3) and (4).
Thus, u < 0, and the zero solution of the linear DDE is stable.
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Finding the Solution using Method of Steps

Consider the IVP

x(t) = —x(t-1),
x(t) = 1 for te[-1,0].

For t € [0,1], we integrate both sides of DDE to obtain

x(t) —x(0) = —/O x(s—1) ds.

A change of variables yields

Thus, x(t) =1—t on [0,1].
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Method of Steps

We repeat this process now for t € [1,2], we get

t t—1
x(t) = x(l)—/1 x(s=1)ds = x(1)—/0 x(s) ds

t-1
1 3
= 0— 1-s)ds = =t>—2t+4 .
0 /0 (1—s)ds > + >
Continuing, for t € [2,3], we have
1 3 1
t)=——(t—12+(t -1 - Z(t-1)+ .
X(0) = —g(t =1+ (12— (e - 1) + ¢
Similarly, for t € [3, 4], we obtain
1 , 1 , 3 , 1 11
x(t) = 24(t 2) 3(t 2)° + 4(t 2) 6(t 2) o

and for t € [4,5], we have
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The solution is

@ continuous on [—1,10],
@ smooth except on [—1,0], and
@ The only assumption on the initial history is continuity.

J.A. Collera (UP BAGUIO) Introduction to DDEs with Applications



Solving DDEs using a Computer (Maple)

ddesys = {c;ltx(t) +x(t—1)=0,x(0) = 1} :

dsn = dsolve(eval (ddesys, {1=1.00}), numeric) :
plots| odeplot|(dsn, [t,x(t) ], 0..50, labels = [t,x(t)]);

L
x(2) os x(2) os
i I~ 0 nl\v.
2 4 X\ A w0 107 md @6 Ae 50
t t

J.A. Collera (UP BAGUIO) Introduction to DDEs with Applications



Varying the time delay 7 results to oscillations?

0s 0s
(13 (13
x(1) x(1)
0 0
o 02
5 10 5 n 3 10 5 n
{ t

*5) n.a.

T =1.10 7=135
3DDE x(t) = —x(t — 7) with x(t) = 1 for t € [-7,0]
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Emergence of Periodic Solutions

o At 7 = 1.57, we get the following. or
0 = cos(vr),
x(t) o ’ v = sin(vr).
, ) Hence, v> =1, ie. v =1. We get
!
-3 cos(t) = O,
U U sin(t) =
@ Suppose A = iv, v > 0, is a root of Therefore,
Ae M =0. T2g+27ﬂ7, nez
So that
and the critical delay value is 7/2
iv + cos(vr) — isin(vr) =0 or approximately 1.57079632679.
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ODE DDE
Linear System x(t) = —x(t) x(t) = —x(t — 1)
Initial Condition x €R ¢ € C([-7,0],R)
Equilibrium Solution x(t)=0 x(t)=0
Characteristic Polynomial Transcendental
Equation Equation Equation
using ansatz
x(t) = et A+1=0 At+e =0
Number of Roots Finite Infinite

Stability of
Trivial Solution

Asymptotically Stable
since A = —1

If all roots have
negative real part
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PART 2 - Linear Systems and Linearization

@ Autonomous Linear System
@ Characteristic Equations

@ Hopf Bifurcation Theorem
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Linearized System about an Equilibrium

@ Suppose that the following nonlinear system has a fixed point (x*, y*).
x = f(x,y)

}'/zg(X,y)

@ Let u=x—x*and v =y — y*. We obtain

S of of
t=x=f(x"+uy +v)=Ff(x"y)+—"y )u+ —(x",y")v+HO.T.
—_— Ox Ay

zero

L 0 0
v=y=g(x*+uy +v)=gx"y") +—g(x*,y*)u + —g(x*,y*)v +H.O.T.
—— Ox 8y

zero

o Neglecting higher order terms, we get the linearized system about (x*, y™*)

0= L oelox aston ||y L0 )

Jacobian matrix
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Linearized System about an Equilibrium

Hartman—Grobman Theorem

The behavior of a dynamical system in a domain near a hyperbolic
equilibrium point is qualitatively the same as the behavior of its
linearization near this equilibrium point, where hyperbolicity means
that no eigenvalue of the linearization has real part equal to zero.
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ODE vs DDE

[ ODE DDE
1D NLS with x(t) = f(x(t)) x(t) = f(x(t),x(t — 1))
equilibrium x* x(t) = f(x t),y(t))
Linearized x(t) = a-x(t) x(t)y=a-x(t)+b-x(t—7)
system x(t) =a-x(t)+ b-y(t)
about x* with a = %(x*) with a = a(x*,x*), b= E(X*’X*)

CE x(t) = ce’t

A—a=

A—a—be =0

[ ODE [ DDE
2D NLS with eq. | X(t) = ) X(t) = F(X(t),X(t—1))
X5 xl X2) .
X* = 1 F = ’ X(t) = F(X(t), Y(t
5 [ o) (1) = FOX(1), V()

Characteristic det(A/ — det(\ —A—Be™ ") =0

Equation { } A= [ fa ho } B = { 2

gX1 g)Q gX1 gxz gy1 gyz
(x1,%2) = (s x at (x1,%2,y1,y2) = (X, %5, X, X3)
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Characteristic Equations

DELAY DIFFERENTIAL
EQUATIONS

WITH APPLICATIONS IN
PopruLATION DYNAMICS

YANG KUANG
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Characteristic Equations

3

Characteristic Equations

3.1. Discrete Delays—Preliminaries

Most studies on delay differential equations start from the local sta-
bility analysis of some special solutions. For this purpose, the standard
approach is to analyze the stability of the linearized equations about the
special solution. If the delay differential equations are autonomous and the
special solution is constant, then the linearized equations take the form of
linear autonomous delay differential equations. The stability of the trivial
solution (i.e., the zero solution) of the linearized equations depends on the
locations of the roots of the associated characteristic equation.
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Motivation and Some History

When delays are finite, the characteristic equations are functions of
delays, and hence the roots of these characteristic equations are also
functions of delays. As the lengths of delays change, the stability of the
trivial solution may also change. Such phenomena are often referred to
as stability switches. In the next three sections, we consider the question
of stability switches in general linear neutral delay differential equations.
The key technique utilized here was developed by Cooke and Grossman
(1982) mainly for retarded equations with one discrete delay. Later on,
Cooke and van den Driessche (1986) extended this technique to retarded
equations with several discrete delays, and Freedman and Kuang (1991)
extended it to neutral delay differential equations with one discrete delay.
The material of this and the next two sections is adopted from Freedman
and Kuang (1991).

Throughout this chapter, the stability of a delay differential equation
is referred to as the stability of its trivial solution.
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First Order Equations

3.2. Discrete Delays—First Order Equations
consider the following first order real scalar linear neutral delay equation
dz(t) dr(t —7)
@ T

+ Bz(t) +yz(t —7) =0, (2.1)
where 7, o, B, 7 are real constants. Its characteristic equation is

A+are™ 4+ 8+ =0. (2.2)

Theorem 2.1. In (2.1), assume |a| # 1; then the following are true.

(1) If |ee| > 1, then (2.1) is unstable for all positive delay 7.

(2) If lal <1, 9% < B, or v = B # 0, then increasing 7 does not
change the stability of (2.1).

(@) Iflal<1, v > &, and

(i) B+9 <0, then (2.1) is unstable for all positive delay 7;

(ii) B8+ >0, then (2.1) ss uniformly asymptotically stable when
T < 19 and unstable when T > 1, where 19 = #/w, and

w= ((+2 — 81 — o)1)/ B _aw2+ﬂ7)
_((‘y A7) ) ) , ﬂ_arccot.( o —Ba))
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First Order Equations

@ Recall that A + aXe ™ 4+ B +ve N = 0.

Theorem 2.1. In (2.1), assume |a| # 1; then the following are true.

(1) If |la| > 1, then (2.1) is unstable for all positive delay 7.

(2) If lo| <1, 42 < B or+y = f # 0, then increasing T does not
change the stability of (2.1).

(3) Iflal <1, 4* > B, and

(i) B+v<0, then (2.1) is unstable for all positive delay T,

(ii) B+ > 0, then (2.1) is uniformly asymptotically stable when
T < 79 and unstable when 7 > 15, where 79 = 8/w, and

Q’wz
w= ((72 -1 - ozg)'l)l/2 , 0= arccot(—;(_r_;;:)) .

@ What can we conclude with regards to the CE for the DNFB example
A+e M =0.

using Theorem 2.17
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Exercise

Prove Theorem 2.1 when o = 0, i.e. the CE has the form

A+ B+ye M =0.

Q Ify2 < B2 ory=pB#0, then increasing 7
does not change the stability of the system.

Q If v2 > B2, and
e 47 <0, then the system is unstable for all 7 > 0;
e B4~ >0, then the system is asymptotically stable when 7 < 79
and unstable when 7 > 79, where

_ arccot(—f/w)

At 7 = 79, the system undergoes a Hopf bifurcation.
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Stability analysis of predator-prey
population model with time delay
and constant rate of harvesting

by Toaha, Syamsuddin, and Malik Abu Hassan

Punjab University Journal of Mathematics 40 (2008): 37-48.




odel with Time Delay (DDEs)*

Consider the following predator-prey model with time delay and constant rate of
harvesting

x(t) = rmx(t) — ax(t)x(t — 7) — bx(t)y(t) — h,

y(t) = ox(t)y(t) —dy(t) — &,

where all parameters are assumed to be positive.

4Toaha, Syamsuddin, and Malik Abu Hassan. " Stability analysis of predatorprey population
model with time delay and constant rate of harvesting.” Punjab University Journal of
Mathematics 40 (2008): 37-48.
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Solving for Equilibrium Solutions

@ Compute the equilibrium solutions by solving
x—ax’—bxy—h = 0,
cxy —dy —k = 0.

@ Since h,k > 0, we can't have x =0 or y = 0.
@ Look for the intersections of the curves
rx—ax2—h k

y:T and y =

@ For a positive equilibrium, we require

(r*—4ah)>0 and (cx—d)>0.
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Exercise

@ Use Matlab with the following parameter values:

r=1, a=001, b=1 c¢=005 d=03, h=01 k=02

—ax?—h k
to plot the curves y = f(x) = % and y = g(x) =
X

cx—d’

—y=(rx-ax2-h)/bx
—y=k/(cx-d)
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Matlab Codes for Plotting the Curves

r=1; a=08.081; b =1; ¢ = 8.85; d = 0.3; h = 08.1; k = 0.2;

*
|

= linspace(®.080001,110,10000);
= (rex—{asx.#x)-h)./(b*x);

—h
I

¥¥x = linspace({(d/c)+0.0801),110,10000);
g = (k)./{cexx=d);

figure(l); clf; hold on;

plot{x,f, " r’, 'LineWidth",3);

plot{x,g,'b", "LineWidth",3);

axis{[-1@ 118 -8.1 1.1]1);

xlabel({'x"', 'FontSize"',308);

ylabel('y ', 'FontSize',3@, "Rotation',B);

legend{'y = (rx - ax™2 - h) / bx','y = k / {cx = d}');
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Exercise

@ Use Matlab's fzero and feval with the following parameter values:
r=1, a=001, b=1, ¢c=005 d=03, h=01 k=02
to find all the positive equilibria of the model.

@ Recall
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Solving for Equilibria through Matlab

=>r =1; a=08.81; b =1; ¢c = 8.85; d = 8.3; h =08.1; k = 0.2;
== f = @(x) (rex={a«x.xx)=h)./(b%x);

== g = @(x) k./(cxx=d);

=> h = @(x) (fix)-g(x)};

=>=> x1 = fzero(h,18); yl = feval(g,x1);
>> %2 = fzero(h,180); y2 = fevall(g,x2);
>> format long

== [x1 y1; =2 y2]

ans =

10.518187362771823 @.885310784793016
95.422031842813041 0.044731705571922
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Solving for Equilibria through Maple

r=1:a=001:b:=1:¢:=005:d:==03:h:=01:k:=02:
f=rx—axx—bxy—hg=cxy—dy—Kk
-0.01x* —yx+x—0.1
005yx—03y—02
sol == solve([f=0,g=0,x> 0,y > 0], [x, ¥]):
[[x=10.51818736, y = 0.8853107848], [x = 95.42203184, y = 0.04473170557]]
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Exercise

1. Consider the system

X = rx—ax2—bxy—h,
{y—cxydyk, ()

where
r=1, a=001, b=1, ¢c=0.05 d=03, h=01l k=02
Classify the following equilibria we previous computed

E; = (10.518187362771823,0.885310784798016),
E, = (95.422031842013041,0.044731705571922).

2. Consider (5) with the same parameters as above but with h = 0.01 and
k = 0.02. Compute for E; and E,, then determine their local stability.
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Exercise 1 - E;

ri=1:a:=001:b:=1:¢c:=005:d:=03:h:=0.1:k:=02:
fr=rx—axx—bxy—h:g=cxy—dy—k:sol=solve([f=0,g=0,x>0,y> 0], [x,¥]);
[ [x=10.51818736, y=0.8853107848 ], [x = 95.42203184, y = 0.04473170557] ] (1)
ni= 1:P:= subs(sol[n], x); Q := subs(sol[n], y);
10.51818736
0.8853107848 2)

with( codegen) : with( LinearAlgebra) :
Fi=proc(x,y) r~x — ax'x — b'xy — h end proc:
G = proc(x, y) c'x'y — d-y — k end proe:

J 1= JACOBIAN([F, G)) : print(J(x, y) ) :

-y—002x+1 -x 3
0.05y 0.05x— 0.3 @
M[1,1] M[1,2]
M= eval(J(x,y), [x=P,y=0]) : Ml = M[2,1) M[2,2) : Eigenvalues(M1);
0.06511741800 + 0.6631283315 1 4
0.06511741800 — 0.6631283315 1 “)
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Exercise 1 - E

ri=1:a:=001:b:=1::=005:d:=03:h:=01:k:=02:
=prx—axx—bxy—h:g=cxy—dy—k:sol = solve([f=0,g=0,x>0,y> 0], [x,»]);

[ [x=10.51818736, y = 0.8853107848 ], [ x=95.42203184, y=0.04473170557] | )
n:=2:P:=subs(sol[n], x); Q = subs(sel[n], y):
95.42203184
0.04473170557 @)

with( codegen) : with( LinearAlgebra) :
F:=proc(x, y) r'x —axx — bxy— hend proc:
G = proc(x, y) c-x-y —d-y — k end proc:

J = JACOBIAN( | F, G|) : print(J(x, y) ) :

-y—002x+1 -x
0.05 ®
.05 y 0.05x—03
M = eval(J P M1 = M1, 1] M1, 2] Eij lues (M1
= eval(J(x,y), [x=P,y=0]) : Ml := M[2,1] M[2,2] | Fleenve ues(MI);
4.431466714 .
-0.9135374650 @
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Exercise 2 - E;

=1:a:=001:b:=1:c:=005:d:=03:h:=001:4k:=0.02:
fi=rx—axx—bxy—h:g=cxy—dy—k:sol:=solve([f=0,g=0,x> 0,y > 0], [x,¥]);
[ [x=6.428191053, y=0.9341624419 ], [ x =99.56243404, y = 0.004275220107] ] (1)
n:=1:P:=subs(sol[n], x); Q := subs(sel[n], ¥);
6.428191053

0.9341624419 2)
with( codegen) : with( LinearAlgebra) :
Fi=proc(x, y) r'x —axx— bxy— hend proc:
G = proe(x, y) c-xy — d-y — k end proc:
J 1= JACOBIAN([F, G]) : print(J(x, y)) :
-y—002x+1 -x
0.05 — @
.05 y 0.05x—0.3
M= eval(J P, ap o= | ML 2L vales (M1
= eva ), [x=P,y=0]): M2, 1] M[2,2] | igenvalues (MI);
-0.02065835520 + 0.5463323382 1 y
-0.02065835520 — 0.5463323382 1 @
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Exercise 2 - E

ri=1:a:=001:b:=1:¢:=005:d:=03:2:=0.01:4k:=0.02:
f=rx—axx—bxy—h:g=cxy—dy—k:sol:=solve([ f=0,g=0,x>0,y>0], [x,¥]);
[ [x=6.428191053, y=0.9341624419 |, [ x=99.56243404, y =0.004275220107] ] (1)
2:P = subs(sol[n], x); Q = subs(sel[n], y);
99.56243404
0.004275220107 2)

n:

with(codegen) : with( LinearAlgebra) :
Fi=proc(x,y) rx—axx—bxy—hend proc:
G = proe(x, ¥) ¢c'xy — d'y — kend proc:

J 1= JACOBIAN([F, G)) : print(J(x, y) ) :

-y—002x+1 -x
0.05 @
05 y 0.05x—03
M iJ P Ml M1, 11 M1, 2] Eij lues( M1
= eval(J(x,y), [x=P,y=0]) : Ml = M[2,1] M[2,2] | Figenva ues(MI);
4674368091 .
-0.8917702905 @
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Linearized System and Characteristic Equation

@ Recall the delay model below, with equilibrium E* = (x*, y*),
x(t) = rmx(t) — ax(t)x(t — 1) — bx(t)y(t) — h,
y(t) ex(t)y(t) — dy(t) — k.
o If we let X(t) = x(t —7) and Y(t) = Y(t — 7), we get
x = f(x,y,X,Y) = rx—axX —bxy — h,
y = gxy,X,Y) = cxy—dy—k.

@ The linearized system about E* has corresponding characteristic equation

det(\ —A—Be ") =0

where

v e g [ )
&x 8y (6, X, Y)=(x* ,y* x*,y*) cy cx* —d
{ fx fy } { —ax* 0 ]

5 = =l o ol
£x gy (Y, X, Y )=(x*,y* ,x*,y*)
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Linearized System and Characteristic Equation

We now write the characteristic equation det(\/ — A — Be=*7) = 0 with

A:{r—ax—by —bx } and B:{—ax 0].

cy* cx* —d 0 0
We get
‘ A —(r —ax* — by*) + ax*e™ " bx* ) ~ 0
—cy* A—(cx* —d) ’
That is,
[A\—(r—ax" —by*) + ax*e*)‘T] A=(cx* =d)] + bex*y* = 0
or
(M4 ad+a)+(asA+a)e ™ = 0 (CE)
where
aa = —(r—ax*—by")—(cx* —d),
a = (" —ax* — by*)(ex® —d) + bex*y*,
a3 = ax",
a, = —ax*(cx® —d).
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Local Stability of the Equilibrium E*

@ For the case 7 = 0, the characteristic equation
(N +ad+a) +(asA+a)e™ = 0 (CE)

reduces to
N+ (a+a) A+ (a2+a) = 0

By RHC, all roots of the above quadratic equation has negative real part iff

(a1 +a3) >0 and (a2 4 a4) > 0.

@ Suppose (a3 + a3) > 0 and (a2 + a4) > 0, and consider now the case 7 > 0.

Lemma (Ruan and Wei 2003)

As 7 is increased from zero, the sum of the orders of the roots of (CE)
in the open right half-plane can change only if a root appears on or
crosses the imaginary axis.

@ We consider 2 cases: A =0 and A = jw. The case A = 0 is not possible.
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Possibility of Purely Imaginary Roots of (CE)

@ Recall the characteristic equation
(M +ad+a) +(ash+a)e™™ = 0 (CE)

e If A\=0is a root of (CE), then (az + a4) = 0.
Since (a2 + a4) > 0, then A = 0 is not a root of (CE).

@ Suppose A = jw is a simple root of (CE) and WLOG we assume w > 0.
Then,

(—w? + ia1w + a0) + (jasw + ag)e™ ™7 = 0,

or (—w? + iayw + a2) + (iasw + ag)(coswr — isinwr) = 0+ 0.
Splitting into real and imaginary parts, we get

(—w? + a2) + (ag coswT + azwsinwr) = 0,

(aw) + (—assinwt + aswcoswr) = 0.
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Possibility of Purely Imaginary Roots of (CE)

That is,
w? — 3 = a4COSWT + asw sinwrT,

31w = a4SINWT — azw CoS wT.

Squaring each sides and then adding corresponding sides, we obtain

(W? — ) + aw? = & + aw?
or
Wwtaw’+B = 0 (6)
where
a = ai—2a— a3 and B = ai—a.

If we let u = w?, then equation (6) becomes following quadratic equation in u
h(u) = V*+au+pB = 0. )

If (7) has a positive root u* > 0, then (6) also has a positive root w* = v/u* > 0.
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When does u? + au + 3 = 0 have simple positive roots?

@ By RHC, if @« > 0 and 3 > 0, then the roots of the quadratic equation have
negative real parts, i.e. the quadratic equation doesn't have positive roots.

e The equation w* + aw? + 3 = 0 doesn't have positive (real) roots.

@ As 7 is increased from zero, the sum of the orders of the roots of (CE) in the
open right half-plane doesn't change.

Theorem 4 (Toaha and Hassan, 2008)

Suppose (a1 + as) > 0 and (az + a4) > 0.
If « >0and 8 >0, then E* is LAS for all 7 > 0.

@ Exercise: Interpret the given RHC geometrically.
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Really, when does v? + au + 3 = 0 have positive roots?!

@ Exactly one simple positive root when

e a<0and <0
ea=0and 8<0
ea>0and <0

@ Exactly two simple positive roots when
e a<0and B >0andy <0 where (X,¥) is the vertex of the parabola.

(These are the inequalities in (3.13) of Toaha and Hassan, 2008.)
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Critical Delay Values

@ Suppose a <0, > 0andy <O0.
Then, the equation w* + aw? + 8 = 0 has 2 simple positive roots w = wy..

@ From

a4 COSWT + azwsinwrt = wz—az,

a;sinwWT — a3wcCoswT = aw.

we get the critical delay 7 = 7 corresponding to the positive roots w = wy

+ _

1 3 -
T = E |:t -1 {W:I:(a3w:|: + a1 2233)} - 27Tk:| .

(as — a133)w? — aray

@ Proof. Solve

azw as sinwr | [ wP-a
daa —asw COSwWT aiw

2
. wlazw* + ajas — azaz
for sinwT and coswt. We get tanwr = ( 5 )
(ag — a1a3)w? — apay
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Transversality Conditions

o Recall that h(u) = v®> + au+ 8. So K (u) = 2u + a = 2w? + (a} — 2a, — 33).

See (3.15) of Toaha and Hassan, 2008

L= s (KA} = s W)} = 5L

d(Re\)
. an - )

T=T, T=T,

< 0.
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Critical Delay Values (Toaha and Hassan, 2008)

T = 1SRed, g = 5.39314,
= 6.98104, 1 = 12.53884,
T = 12.58266, T, = 19.68453,
T4 = 18.68453, and T, = 26.83023.
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Three-Species Intraguild Predation (IGP) Model

z(t) [—co + ax(t) + cy(t)]

y(t) [=bo + bix(t) — b3z(t)]

\ .
x(t) [ ao — aix(t)] — a2y (t) — asz(t)]

R

@ Omnivory — feeding on more than one trophic level.
@ IGP — combination of community modules (predation and competition), and

is quite common in nature (Arim and Marquet, 2004).
@ Persistence — The IG prey must be superior than the IG predator in
competing for the shared basal resource while the IG predator must gain
significantly from its consumption of the |G prey (Holt and Polis, 1997).
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Stage-Structured IGP Model

Some works on stage-structured models

e Wang, Y., Wu, J., Xiao, Y.: A stage structured predator-prey model with
time delays. (2008)
@ Yamaguchi, M., Takeuchi, Y., Ma, W.: Dynamical properties of a stage
structured three-species model with intraguild predation. (2007)
In our model, we split the IG Prey population y(t) into immature y;(t) and
mature y,(t) stages with maturation age 7 > 0

e

@ the immature IG preys have little ability of predation, and

@ the immature IG preys are able to avoid predation by the IG predators by
taking refuge.

J.A. Collera (UP BAGUIO)
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Stage-Structured IGP Model

) = x(t)[a0 — a1x(t) — a2y2(t) — asz(t)],

ni(t) = —py(t) — bie ™ x(t — 7)ya(t — 7) + bix(t)ya(2),
) = —boya(t) + bie T x(t — T)y2(t — 7) — bsya(t)z(t),
) = z(t)[-co + ax(t) + caya(t)],

@ 1 > 0 is the death rate of immature IG preys,
@ bix(t)y»(t) is number of immature |G preys that are born at time t, and

@ bie " x(t — 7)y2(t — 7) is the number of immature IG preys that was born
at time (t — 7) which still survives at time t and is transferred from the
immature stage to the mature stage at time t.

@ The equation for the immature |G prey can be separated from the rest.
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Stage-Structured IGP Model

@ Renaming y»(t) to just y(t), we obtain the following system:

x(t) = x(t)[a0 — ax(t) — axy(t) — a3z(2)],
y(t) = —boy(t) + bre”""x(t = )y(t —7) — bay(t)z(t),  (8)
2(t) = z(t)[-co+ax(t) + ay(t)].

Eo (0,0,0),

EE = (K,0,0),

E, = (A B,0),

Es = (C,0,D),

E, (P/S,Q/S,R/S).
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Local Stability of Equilibria

@ Stability of equilibrium E, = (X, s, Z«) is determined by the roots of the
characteristic equation

det(A — My — Mye ") =0 (9)

corresponding to the linearized system about E, where [M;|M,] is given by

ap — 231X — 32y« — a3Zs —anXs — a3 Xy 0 0 0
0 —by — b3z, —bsys bie Ty,  bie7H"x, 0
C1Z4 C2Zx —Co + C1xX« + C2Yx 0 0 0

o If all roots of (9) have negative real part, then E, is LAS.

Strategy

Use Routh-Hurwitz criterion, when 7 = 0, to obtain conditions that
will guarantee that all roots of (9) have negative real part. Then, check
if stability switches occur (or not) as 7 is increased from zero.
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Existence and Local Stability

Equilibrium Existence Stability
Solution Conditions Conditions
Ey =(0,0,0) Always exists Unstable saddle

E; = (K,0,0) Always exists B<0and D<O0

E; = (A, B.0) B>0 |R<Oand 3 >ref
E = (C,0,D) D>0 Q<0
£ P QR P QR -0
4=\ cr e ¢ < o' c
$’S’S $’S’S
by bie T — a1b —
Note that: K= ﬂ, = 0 ) = 2ne 2 07 = @7 D= 29— 2%
ap bie=HT arbje=rT c aqa
S = aibsc; — axbscy + asbicoe M7, R = (agc, — axco)bie™#7 — a1bocy + axbocy,
Q = —apgbsc1 + a1bscg — asbocy + asbicoe #7, and P = agbscy — axbscy + asbpco.
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Local Stability of the Positive Equilibrium (Case 7 = 0)

@ Characteristic equation corresponding to the linearized system around Ej is
[N+ a(T)A? + b(T)A + c(7)] + [p(T)A2 + q(T)X + r(7)] e *" = 0. (10)
@ Follow the discussions and notations used in (Beretta and Kuang 2002) in
analyzing the roots of such equations with delay-dependent coefficients.
@ Note that (a+ p),(b+ g) > 0, while (c+r) >0if S > 0.
e Also,(a+ p)(b+ q) — (c+r) is given by

2
ai <32b1e“T . 9 + azcy - R> (g) + (32b3C1 — a3b1C267MT) . g . % . g

S S

e At 7 =0, equation (10) reduces to A3 + pA? + o\ + ¢ = 0 where the
coefficients p = (a+ p)|._g, 0 = (b+q)|._y. and ¢ = (c+r)|, -

Let 7 =0 in system (8). If S(0) > 0 and (azbszci — asb1cp) > 0, then the positive
equilibrium E4 is LAS. If S(0) < 0 or if (po — ¢) < 0, then E is unstable.
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Local Stability of the Positive Equilibrium (Case 7 > 0)

@ Since S#0, (c+r)=S- %%% # 0. Thus, A(7) = 0 is not a root of (10).
o If A\(7) = iw(7), with w(7) > 0, is a root (10), then

(aw?(r) = ©)* + (W*(7) — b)*w*(r) = (pw?(7) —r)*+ ¢’w*(r). (11)
o Following (Beretta and Kunag 2002), we write (11) into the following form
Flw,7) == w®+aw* +Bw’ +7 = 0 (12)

where a = a°> — p? —2b, 3 = b?> — q*> +2(pr — ac), and v = c? — r2.
o If we let u = w?, then (12) can be written as

H(u,7) == ®* +av*+Bu+vy = 0. (13)

@ Note that if (13) has a positive root up, then (12) has a positive root
wo = /Ug and consequently, (10) has a pair of purely imaginary roots
A= :tiwo.

@ If (13) has a positive root, then stability switches may occur as 7 is varied.
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Local Stability of the Positive Equilibrium (Case 7 > 0)

@ Let /| C Ry be the set where w(7) is a positive root of (12).
o We then define the angle 6(7) € [0, 27] as solution to the following

(pw?(7) — N)(w?(r) — b)w(7) + qu(r)(aw?(7) — c)
p2wt(7) + (g2 — 2pr)w?(7) + r?

qu?(r)(w?(r) — b) — (p?(r) — r)(aw?(r) ~ )
P2t (1) + (¢ — 2pr)?(r) + P

sinf(r) =

cos (1)

@ For 7 € [, we have w(7)T = 6(7) + 2n7 for n € Ng.
@ For 7 € I and n € Ny, we can define the functions

Sp(7) =1 — (1),

where 7,(7) = (0(7) 4+ 2n7) Jw(7T).
@ The functions S,(7) are continuous and differentiable.
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Local Stability of the Positive Equilibrium (Case 7 > 0)

Theorem (Beretta and Kuang (2002))

Assume that w(T) is a positive root of (12) defined for T € | C Ry, and at some
7% €, S;(7*) = 0 for some n € Ng. Then a conjugate pair of simple purely
imaginary roots Ay (7*) = £iw(7*) of (10) exists at T = 7* which crosses the
imaginary axis from left to right (resp. from right to left) if §(7*) > O (resp.
0(7*) < 0), where

6(r7) = sign { B2, () | = sign {FL(w(r"), 7)} -sign { <52
o Since F/(w(7),7) = 2w(7) - Hy(u(7), T)|u(r)=w2() and w(7) >0 for 7 € I,
} : (14)

@ Also, if such 7* exists and 6(7*) # 0, then at 7 = 7* the system undergoes a
Hopf bifurcation at the positive equilibrium Ej,.

5(r*) = sign{H,(u(r*),7")} - sign{dsc;g)
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Example

@ We use ag = 5.00, a; = 0.40, a = 1.00, a3 = 0.85, by = 1.00, b; = 1.00,
bs = 1.00, ¢g = 1.20, ¢; = 0.10, ¢, = 1.00, and p = 0.01.

o At 7 =0, E; = (4.0435,0.7957,3.0435) is unstable because (po — ) < 0.
We want to know if stability switches will occur as 7 is increased from zero.

wlf \Y©

o(t)

3

B

; 100 w0 N\ﬂ-u
B

\

u H4
|
(%, H(7, 10)

-60

H(#@(1),7)

e For 7 immediately to the right of zero, H(u,7) = v + a(7)u? + B(7)u +~(7)

has coefficients a(7) < 0, 8(7) < 0, and ~(7) > 0.

@ Equation (13) has exactly 2 positive simple roots H(z,7) < 0.
@ We only consider 7 € (0, Teng) Where 7e,g = 17.1276 is approximately.
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@ The characteristic equation has 2 conjugate pairs of simple purely imaginary
roots A\(7%) = £iw_(7*) and A\(7}) = fiw(77F).

@ To find the critical delay values T} where stability switches may occur we
look at the zeros of the functions S;F(7).

e Sy (1), S (7), S5 (7), and S (7) has zero 7, = 1.0515, ;" = 2.4002,
75 = 4.9575, and 7, = 5.8070, resp. and sign { 95; (1) i} = +1.
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"

vl

| ay [ T —

(E,H(E, 10] :Delay Time r‘

e Meanwhile, we have that sign {H!(u(7),75)} = +1.
Therefore, we have §(7;f) = £1.

o At 7 =7, = 1.0515, we have a switch from unstable to stable, while at
7 =77 = 2.4002 we have a switch from stable to unstable.

Introduction to DDEs with Applications

J.A. Collera (UP BAGUIO)



Example

7=0.9047

. xtt) |

1 ; n 7] T r0 =0 T

\ o +=2.0000

max, \ / A 1

x(t) / ] i
| 7=3.0090

. | ——— x(t) ','! |

Delay Time + ) 1

@ Stable branches of periodic solutions (shown in green) emanating from the
Hopf bifurcations.

@ Time series of x(t) for different delay values illustrating the existence of a
stable periodic solution for 7 < 7, and 7 > 7;", and the local stability of £,
for 7 € (1,71 )-
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Summary and Conclusions

@ We studied the three-species IGP model with stage structured |G prey
population.

@ We used the theory developed by Beretta and Kung (2002) to examine the
roots of the resulting characteristic equation with delay-dependent
coefficients.

@ We show the possibility of getting stability switches and illustrate this using
numerics.

@ One can get periodic coexistence as the positive equilibrium becomes
unstable.

@ Introducing stage structure in our IGP model enhances persistence of species.
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