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Introduction: Population Model

I Population modelling is a mathematical approach to study
population dynamics.

I Population dynamics describe how a population fluctuates in
size and composition over time, in order to forecast future
changes.

I These dynamics are useful for ecologists/ biologists/
mathematicians to determine the threshold level at which
specific/general populations can be conserved.

I Some models consider growth without environmental
constraints while others deliberate the surrounding resources.



Population Model

I In population models, interactions between population and its
environment, individual and other species should be taken into
account.

(a) Prey-predation (b) Competition

Figure 1 : Interactions among fish populations



Population Model

I Population growth rate can be defined as the rate of change
of population size over time

I Exponential growth rate:
dN

dt
= rN represents constant

population growth rate regardless of the population density.

I Logistic growth:
dN

dt
= rN

(
1 − N

K

)
describes the population

growth rate decreases as the population density approached
maximum imposed by limited resources or environmental
carrying capacity K .



Population Model

(a) Exponential Growth (b) Logistic Growth



Stability Analysis

I Stability analysis is performed to address the stability of the
equilibria that exist in a dynamical system under small
perturbation of initial conditions.

I Local stability refers to the solutions that tend to approach
the equilibrium point under initial conditions close to the
equilibrium points.

I Local stability analysis of the equilibria can be examined by
constructing the Jacobian Matrix and the corresponding
eigenvalue.

I Global stability refers to the solutions that must approach the
equilibrium point regardless of the initial conditions.

I Global stability of a dynamical system can be studied by
constructing the Lyapunov function.



Bifurcation Analysis

I Bifurcation can occur when a slight fluctuation in the
parameter causes significant change in its stability behaviors.

I Bifurcation can happen in ODEs, DDEs and PDEs.

I Bifurcation analysis uses the technique of parameter variation
to examine the topological change in the dynamical behaviors.

I Singularity analysis or sensitivity analysis are some approaches
used in investigating bifurcation of a system.

I Bifurcation analysis needs analytical solutions and numerical
simulations to understand the system’s behaviour.

I A parameter that gives significant change in the system is
called the main primary bifurcation parameter, and all other
parameters, which are often called secondary bifurcation
parameters.



Variable Carrying Capacity

I The concept of carrying capacity is extensively applied in
many areas pf study.

I Carrying capacity is the maximum population abundance (for
a given species) an environment can sustain.

I The carrying capacity, K is usually regarded as a constant in
population growth models which is not often realistic.



Single Population Model

A non-autonomous logistic equation is the initial model to describe
changing environment where the carrying capacity is time-
dependent:

N ′ = rN

(
1 − N

K (t)

)
,

Periodic: K (t) : a + b sin(ct + ψ)

Saturation: K (t) : a + b(1 = e−ct)

Logistic: K (t) : K1 + K2/(1 + ae−bt)



Single Population Model

Figure 2 : Logistic model with time-dependent carrying capacities.



Single Population Model

The modified logistic model with the carrying capacity as state-
variable:

N ′ = aN

(
1 − N

K

)
,

Decay: K ′ = −bN.

Open-ended: K ′ = b(N − K ).

Interaction: K ′ = bK − cKN.



Single Population Model

Figure 3 : Logistic model with state variable carrying capacities.



Multispecies Population Model

I Single population models provide the dynamical behavior of
the inter-relation between the population and its carrying
capacity.

I Two species model will give richer nonlinear dynamics.

I In the context of prey (X ) and predator (Y ) model, sharing
the same base resource (Z ) is one of important cases to
consider.

X

Z

Y

Figure 4 : Basic food web system.



Multispecies Population Model

Examples of predator-prey-resource system4:

(a) (b)

Figure 5 : (a) Fish populations, (b) Spider mite populations.

4
A. Janssen et al. Prog. Biol. Control, 21-44, 2006.



Modified Predator-prey Model 1

The non-dimensionalised version

x ′ = x
(

1 − x

k

)
− xy ,

y ′ = αy

(
1 − βy

k

)
+ xy ,

k ′ = k (γ − δx − εy) .

(1)

x : Prey population
y : Predator population
k: Resource

Environmental carrying capacity as biotic resource enrichment.



Analysis and Results

There are 3 equilibria Pi in the (x , y , k) phase space:

Steady states Characteristics Stability

P1(γδ , 0,
γ
δ ) Extinction of predator Unstable

P2(0, γε ,
βγ
ε ) Extinction of prey Stable if γ > ε

P3(x∗, y∗, k∗) Coexistence Stable if γ < ε



Analysis and Results
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Figure 6 : Steady state diagrams for (a) x ; (b) y ; (c) k with α = 0.3.

TB : Transcritical Bifurcation;



Analysis and Results
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Figure 7 : Steady state diagrams for (a) x ; (b) y ; (c) k with
α = 0.003.

TB : Transcritical Bifurcation; HB : Hopf Bifurcation;



Analysis and Results
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Figure 8 : Time series plots with γ = 2.12 and α = 0.3 for: (a) x ; (b)
y ; (c) k. Initial conditions (x , y , k) = (0.1, 0.4, 0.5).



Analysis and Results
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Figure 9 : Time series plots with γ = 2.12 and α = 0.003 for: (a) x ;
(b) y ; (c) k. Initial conditions (x , y , k) = (0.1, 0.4, 0.5).



Modified Predator-prey Model 2

The non-dimensionalised version

x ′ = x
(

1 − x

k

)
− xy ,

y ′ = αy

(
1 − βy

k

)
+ xy ,

k ′ = k (γ − δk − εx − φy) .

(2)

x : Prey population
y : Predator population
k : Resource



Analysis and Results

There are 4 equilibria Pi in the (x , y , k) phase space:

Steady states Characteristics Stability

P1(0, 0, γδ ) Extinction of prey and Unstable
predator

P2( γ
δ+ε , 0,

γ
δ+ε) Extinction of predator Unstable

P3(0, γ
βδ+φ ,

βγ
βδ+φ) Extinction of prey Stable if γ > βδ + φ

P4(x∗, y∗, k∗) Coexistence Stable if γ < βδ + φ



Analysis and Results
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Figure 10 : Steady state diagrams when φ = 0, β = δ = 1 and
ε = 3, α = 0.1 for (a) k , (b) y , (c) x .

TB : Transcritical Bifurcation;



Analysis and Results
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Figure 11 : Steady state diagrams when φ = 0, β = δ = 1 and
ε = 3, α = 1.5 for (a) k , (b) y , (c) x .

TB : Transcritical Bifurcation; LP1 : Limit Point 1 ; LP2 : Limit
Point 2.



Analysis and Results
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Figure 12 : Steady state diagrams when φ = 0, β = δ = 1 and
ε = 3, α = 1.5 for (a) k , (b) y , (c) x .

TB : Transcritical Bifurcation; LP1 : Limit Point 1 ; LP2 : Limit
Point 2.



Analysis and Results

Figure 13 : Time plots of two initial conditions (x0, y0, k0) in the
bistablity region, γ = 1.1 for (a) (0.01, 0.1, 0.2) and (b) (0.02, 0.1, 0.2).



Harvesting and Toxicant Effects: Model 3

By incorporating the harvesting and toxicant effects into a
prey-predator fishery model, we can model the non-dimensionalised
system of

x ′ = x (1 − x) − αxy − βx − δx3,

y ′ = σy (1 − y) + ρxy − εy − µy2.
(3)

x : Prey fish population
y : Predator fish population
β: Harvesting rate on x
ε: Harvesting rate on y
δ: Coefficient of toxicant on x
µ: Coefficient of toxicant on y



Analysis and Results

There are 4 equilibria Pi in the (x , y) phase plane:

Steady states Characteristics

P1(0, 0) Extinction of prey and
predator

P2

(
0,
σ − ε

ρσ

)
Extinction of prey

P3

(
1 − β

α
, 0

)
Extinction of predator

P4(x∗, y∗) Coexistence



Analysis and Results
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Figure 14 : Steady state diagrams when α = 0.15, β = 0.5, δ = 1.2,
σ = 0.65, ρ = 0.25 and µ = 0.35 for (a) x , (b) y .

TB : Transcritical Bifurcation;



Analysis and Results
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Figure 15 : Time plots with initial conditions of (x0, y0) = (0.2, 0.1)
at (a) ε = 0.6 and (b) ε = 0.8.



Modified Predator-prey Model 4

The non-dimensionalised version

x ′ = x (1 − αx) − xy − βx − σx2y ,

y ′ = −δy + xy − εy − ρxy2.
(4)

x : Prey fish population
y : Predator fish population
β: Harvesting rate on x
ε: Harvesting rate on y
σ: Coefficient of toxicant on x
ρ: Coefficient of toxicant on y



Analysis and Results

There are 3 equilibria Pi in the (x , y) phase plane:

Steady states Characteristics

P1(0, 0) Extinction of prey and
predator

P2

(
1 − β

α
, 0

)
Extinction of predator

P3(x∗, y∗) Coexistence



Analysis and Results
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Figure 16 : Steady state diagrams when α = 0.1, ε = 0.85, δ = 0.1,
σ = 2 and ρ = 0.2 for (a) x , (b) y .
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Figure 17 : Time plots with initial conditions of (x0, y0) = (1.2, 1.0)
at (a) β = 0.1, (b) β = 0.95, (c) β = 1.8.



Optimal Harvesting Policy

I Maximum Sustainable Yield (MSY) is widely used in
population ecology to determine the largest yield that can be
obtained from a certain population without altering
dangerously the harvested population.

I MSY is sometimes unrealistic because it neglects the cost of
harvesting.

I Optimal Harvesting Policy is applied to maximize the profit
based on the standard cost benefit criterion while not
endangering the harvested species.



Optimal Harvesting on Single Population

I The economic rent at any time is given by

π = (pqx − c)E . (5)

x : Fish population
p: Unit price of landed fish
q: Catchability coefficient of the fish
c : Cost of harvesting
E : Harvesting Effort



Optimal Harvesting on Single Population

I The optimal harvesting policy on single fish population is to
maximize a continuous time stream of revenues

J =
∫∞
0

[
e−δt ·π

]
dt. (6)

δ: Instantaneous annual rate of discount
π: Economic rent at any time t



Optimal Harvesting on Single Population

I The continuous revenue function is then optimize by
Pontryagin Maximal Principle where the Hamiltonian function
is

H =
[
e−δt ·π

]
+ λ

(
dx

dt

)
. (7)

δ: Instantaneous annual rate of discount
λ: Adjoint variable
π: Economic rent at any time t



Optimal Harvesting on Multispecies Model

I Different from single species model, the economic rent at any
time is given by

π = (p1q1x + p2q2y − c)E . (8)

x : First fish population y : Second fish population
p1: Unit price of landed first fish
q1: Catchability coefficient of the first fish
p2: Unit price of landed second fish
q2: Catchability coefficient of the second fish
c : Cost of harvesting
E : Harvesting Effort



Optimal Harvesting on Multispecies Model

I Same as single species model, the optimal harvesting policy
on multispecies fish population is to maximize a continuous
time stream of revenues

J =
∫∞
0

[
e−δt ·π

]
dt (9)

δ: Instantaneous annual rate of discount
π: Economic rent at any time t

However, the function π of multispecies model is different from
that of single species.



Optimal Harvesting on Multispecies Model

I The continuous revenue function is then optimize by
Pontryagin Maximal Principle where the Hamiltonian function
is

H =
[
e−δt ·π

]
+ λ1

(
dx

dt

)
+ λ2

(
dy

dt

)
(10)

δ: Instantaneous annual rate of discount
λ1, λ2: Adjoint variables
π: Economic rent at any time t



Conclusion

I Variable carrying capacity plays an crucial role in sustaining
both economical and biological growth abd the resource
constraint must be taken into account.

I Harvesting activities on fish population can affect the survival
and mortality rate of marine species.

I Optimal harvesting can be an ideal way to prevent extinction
of population in the ecosystem.



THANK YOU

hamizahs@uthm.edu.my


	Introduction
	Variable Carrying Capacity
	Harvesting and Toxicant Effects
	Optimal Harvesting Policy
	Conclusion

