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@UT Introduction: Population Model

» Population modelling is a mathematical approach to study
population dynamics.

» Population dynamics describe how a population fluctuates in
size and composition over time, in order to forecast future
changes.

» These dynamics are useful for ecologists/ biologists/
mathematicians to determine the threshold level at which
specific/general populations can be conserved.

» Some models consider growth without environmental
constraints while others deliberate the surrounding resources.
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» In population models, interactions between population and its
environment, individual and other species should be taken into
account.

(a)  Prey-predation (b)  Competition

Figure 1 : Interactions among fish populations




@UT Population Model

» Population growth rate can be defined as the rate of change
of population size over time
. dN
» Exponential growth rate: — = r/N represents constant
population growth rate regardless of the population density.

dN N
P> Logistic growth: o N 1— X describes the population

growth rate decreases as the population density approached
maximum imposed by limited resources or environmental
carrying capacity K.

wwweythm.edy,my.
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(a)  Exponential Growth (b)  Logistic Growth




@UT Stability Analysis

» Stability analysis is performed to address the stability of the
equilibria that exist in a dynamical system under small
perturbation of initial conditions.

P Local stability refers to the solutions that tend to approach
the equilibrium point under initial conditions close to the
equilibrium points.

» Local stability analysis of the equilibria can be examined by
constructing the Jacobian Matrix and the corresponding
eigenvalue.

» Global stability refers to the solutions that must approach the
equilibrium point regardless of the initial conditions.

» Global stability of a dynamical system can be studied by
constructing the Lyapunov function.
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Bifurcation Analysis

» Bifurcation can occur when a slight fluctuation in the
parameter causes significant change in its stability behaviors.

» Bifurcation can happen in ODEs, DDEs and PDEs.

» Bifurcation analysis uses the technique of parameter variation
to examine the topological change in the dynamical behaviors.

» Singularity analysis or sensitivity analysis are some approaches
used in investigating bifurcation of a system.

» Bifurcation analysis needs analytical solutions and numerical
simulations to understand the system’s behaviour.

» A parameter that gives significant change in the system is
called the main primary bifurcation parameter, and all other
parameters, which are often called secondary bifurcation
parameters.




@UT Variable Carrying Capacity

> The concept of carrying capacity is extensively applied in
many areas pf study.

» Carrying capacity is the maximum population abundance (for
a given species) an environment can sustain.

» The carrying capacity, K is usually regarded as a constant in
population growth models which is not often realistic.
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A non-autonomous logistic equation is the initial model to describe
changing environment where the carrying capacity is time-

dependent:
N
/ e R —
N"=rN (1 K(t)) ,

Periodic: ~ K(t) : a+ bsin(ct + %)
Saturation: K(t):a+ b(1 = e )
Logistic:  K(t) : K1 + Ko /(1 4 ae™bt)

wwwythm.edu,my.
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Figure 2 : Logistic model with time-dependent carrying capacities.
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The modified logistic model with the carrying capacity as state-

variable:
N
N =aN(1-=
on (1)
Decay: K’ = —bN.
Open-ended: K’ = b(N — K).
Interaction: K' = bK — cKN.

wwwythm.edu,my.
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Figure 3 : Logistic model with state variable carrying capacities.




@UT Multispecies Population Model

» Single population models provide the dynamical behavior of
the inter-relation between the population and its carrying
capacity.

> Two species model will give richer nonlinear dynamics.

» In the context of prey (X) and predator (Y) model, sharing
the same base resource (Z) is one of important cases to
consider.

Figure 4 : Basic food web system.
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Examples of predator-prey-resource system®:

i Tetranyehus
cinnabarinus
p, [splder mite)

Figure 5 : (a) Fish populations, (b) Spider mite populations.
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The non-dimensionalised version

r_ X

X—X(]. k) Xy,

Y =ay <1_ﬂy> + xy, (1)
kK'=k(y—0x—ey).

x: Prey population
y: Predator population
k: Resource

Environmental carrying capacity as biotic resource enrichment.
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There are 3 equilibria P; in the (x, y, k) phase space:

Steady states  Characteristics Stability
P1(%,0,3) Extinction of predator Unstable
P>(0, 1, ’877) Extinction of prey Stable if v > €
P3(x*,y*, k*) Coexistence Stable if v < €

Wwweythm.edu,my.



Analysis and Results
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Figure 6 : Steady state diagrams for (a) x; (b) y; (c) k with & = 0.3.

TB : Transcritical Bifurcation;
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Figure 7 : Steady state diagrams for (a) x; (b) y; (c) k with
o = 0.003.

TB : Transcritical Bifurcation; HB : Hopf Bifurcation;
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@UT Analysis and Results
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Figure 8 : Time series plots with v = 2.12 and e = 0.3 for: (a) x; (b)
y; () k. Initial conditions (x, y, k) = (0.1,0.4,0.5).
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@UTHM Analysis and Results
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Figure 9 : Time series plots with v = 2.12 and a = 0.003 for: (a) x
(b) y; (c) k. Initial conditions (x,y, k) = (0.1,0.4,0.5).
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The non-dimensionalised version

X/:X<1—%)—Xy,

v =ay (1= ) . @)
k' = k(y— 0k —ex — ¢y).

x: Prey population
y: Predator population
k: Resource

wwwythm.edu,my.
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There are 4 equilibria P; in the (x, y, k) phase space:

Steady states Characteristics Stability
P1(0,0,3) Extinction of prey and Unstable
predator
Pa(51,0, 57) Extinction of predator Unstable
Ps(0, ﬁa%qsa /3%) Extinction of prey Stable if v > 86 + ¢
Pa(x*, y*, k*) Coexistence Stable if vy < B + ¢

wwweythm.edy,my.



Analysis and Results

Figure 10 : Steady state diagrams when ¢ = 0,3 =6 = 1 and
e=3,a=0.1for (a) k, (b) y, (c) x

TB : Transcritical Bifurcation;
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Analysis and Results

Figure 11 : Steady state diagrams when ¢ = 0,3 =6 = 1 and
e=3,a=15 for (a) k, (b) y, (c) x

TB : Transcritical Bifurcation; LP1 : Limit Point 1 ; LP2 : Limit
Point 2.
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@UT Analysis and Results

Figure 12 : Steady state diagrams when ¢ = 0,3 =6 = 1 and
e=3,a=15 for (a) k, (b) y, (c) x

TB : Transcritical Bifurcation; LP1 : Limit Point 1 ; LP2 : Limit
Point 2.
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@UTHM Analysis and Results
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Figure 13 : Time plots of two initial conditions (xg, yo, ko) in the
bistablity region, v = 1.1 for (a) (0.01, 0.1, 0.2) and (b) (0.02, 0.1, 0.2).
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By incorporating the harvesting and toxicant effects into a
prey-predator fishery model, we can model the non-dimensionalised

system of
x'=x(1—-x)—axy — Bx — 0x>,
Y =oy(L—y)+pxy —ey — uy?,
Prey fish population
Predator fish population
: Harvesting rate on x
Harvesting rate on y
Coefficient of toxicant on x
. Coefficient of toxicant on y

(3)

X:
y:
B
€:
d:
1
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There are 4 equilibria P; in the (x, y) phase plane:

Steady states  Characteristics

P1(0,0) Extinction of prey and
predator

P <O, o= 6> Extinction of prey

P3 <1_B, 0> Extinction of predator
!

Pa(x*, y™*) Coexistence

wwweythm.edy,my.
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Figure 14 : Steady state diagrams when o = 0.15, 3 = 0.5, = 1.2,
0 =0.65,p =0.25 and p = 0.35 for (a) x, (b) y.

TB : Transcritical Bifurcation:
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Figure 15 : Time plots with initial conditions of (xg, o) = (0.2,0.1)
at (a) e=0.6 and (b) ¢ = 0.8.
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The non-dimensionalised version

X
y
s
€
o
p

x'=x(1—ax)—xy — Bx — ox?y, ()
y'= =0y +xy —ey — pxy>.

. Prey fish population
: Predator fish population
: Harvesting rate on x

Harvesting rate on y

. Coefficient of toxicant on x
: Coefficient of toxicant on y
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There are 3 equilibria P; in the (x, y) phase plane:

Steady states  Characteristics

P1(0,0) Extinction of prey and
predator

1 _
P, <’6, 0> Extinction of predator
o

P3(x*, y*) Coexistence

wwwythm.edu,my.



Prey, x

Figure 16

Predator, y

o=2and p=0.2for (a) x, (b) y
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: Steady state diagrams when @ = 0.1,¢ = 0.85,6 = 0.1,

Wwvythm.edu,m



@UT Analysis and Results

—Prey, x —Prey, x
i —— Predator, y| ——Predator, y|

Population
Population
Population

(a) (b) (c)
Figure 17 : Time plots with initial conditions of (xg, yo) = (1.2, 1.0)
at (a) 5 =0.1, (b) 5 =10.95, (c) B =1.8.
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@UT Optimal Harvesting Policy

» Maximum Sustainable Yield (MSY) is widely used in
population ecology to determine the largest yield that can be
obtained from a certain population without altering
dangerously the harvested population.

» MSY is sometimes unrealistic because it neglects the cost of
harvesting.

» Optimal Harvesting Policy is applied to maximize the profit

based on the standard cost benefit criterion while not
endangering the harvested species.

wwweythm.edy,my.



@UT Optimal Harvesting on Single Population
> The economic rent at any time is given by

™= (pgx — ) E. (5)

Fish population

Unit price of landed fish

. Catchability coefficient of the fish
Cost of harvesting

: Harvesting Effort

mo QT X

wwwythm.edu,my.



@UT Optimal Harvesting on Single Population

» The optimal harvesting policy on single fish population is to
maximize a continuous time stream of revenues

J=[" [e7 7] dt. (6)

0: Instantaneous annual rate of discount
m: Economic rent at any time t

wwwythm.edu,my.



@UT Optimal Harvesting on Single Population

» The continuous revenue function is then optimize by
Pontryagin Maximal Principle where the Hamiltonian function

o] o (%), o

0: Instantaneous annual rate of discount
A: Adjoint variable
m: Economic rent at any time t
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» Different from single species model, the economic rent at any
time is given by

7 = (p1q1x + p2gay — ¢) E. (8)

x: First fish population y: Second fish population
p1: Unit price of landed first fish

g1: Catchability coefficient of the first fish

p2: Unit price of landed second fish

g>: Catchability coefficient of the second fish

c: Cost of harvesting

E: Harvesting Effort

wwweythm.edy,my.
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» Same as single species model, the optimal harvesting policy
on multispecies fish population is to maximize a continuous
time stream of revenues

J fo [_M 7T] dt (9)

0: Instantaneous annual rate of discount
m: Economic rent at any time t

However, the function 7 of multispecies model is different from
that of single species.

wwwythm.edu,my.
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» The continuous revenue function is then optimize by
Pontryagin Maximal Principle where the Hamiltonian function

H=[e" 7] + \ (‘;’;) +)\2<Z);) (10)

0: Instantaneous annual rate of discount
A1, A2 Adjoint variables
m: Economic rent at any time t
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» Variable carrying capacity plays an crucial role in sustaining
both economical and biological growth abd the resource
constraint must be taken into account.

» Harvesting activities on fish population can affect the survival
and mortality rate of marine species.

» Optimal harvesting can be an ideal way to prevent extinction
of population in the ecosystem.
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THANK YOU

hamizahs@uthm.edu.my
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